T.P. N° 24 : Schéma de liaison à la terre de type IT DÉROULEMENT DE LA SÉANCE

TITRE	ACTIVITÉS PROF	ACTIVITÉS ÉLÈVES	MOYEN	DURÉE
-				
-				
-				

Fin du T.P. {3,5 heures}

Tableau de comité de lecture

Date de lec	ture Lecteurs	Observation	Remarques rédacteur	Date modifications
9 décembre	2001 CROCHET David	Première Version + Améliorations mineures		9 décembre 2001

Quote of my life:

Fournir ma contribution aux autres est ma philosophie.

Et la vôtre?

Si vous avez lu ce T.P. et que vous avez des remarques à faire, n'hésiter pas et écrivez-moi à l'adresse suivante :

of vous avez in certification avez des remarques a raire, il nestier pas et cerrivez mor a radresse survaine.				
Ce dossier contient :	E-Mail :	Adresse Professionnel:		
	Crochet.david@free.fr	CROCHET David		
• Un dossier élève (pages 4 à -)		Professeur de Génie électrique		
• Un dossier prof (pages - à -)		Lycée Joliot CURIE		
• Un dossier ressource (page - à -)		Place du Pigeon Blanc		
• Un transparent (page -)		02500 HIRSON		
Champan (page)		(Adresse valable jusq'au 30 juin 2002		

T.P. N° 24 Schéma de liaison à la terre de type IT

Niveau: T STI GET

<u>Lieu</u>: Atelier d'électrotechnique

Durée : 3,5 heures

Organisation : groupe ½ classe, travail binôme

LIAISON AU RÉFÉRENTIEL

B 2 CHAPITRE 2 : Système terminal de conversion de l'énergie électrique

•

_				
PRE.	.R	$\mathbf{F}C$	11	TS

Les élèves doivent être capables :

OBJECTIFS

Les élèves devront être capables de :

-

NIVEAU D'APPRENTISSAGE

- Apprendre à (savoir intégré)
- Apprendre à (savoir actif)

<u>MÉTHODE</u>

Active formative

S.T.I. - G.E.T. B 2 - ÉLECTROTECHNIQUE S.T.I. - G.E.T. SCHÉMA DE LIAISON A LA TERRE DOSSIER PÉDAGOGIQUE TP N° 24

Schéma de liaison à la terre de type IT

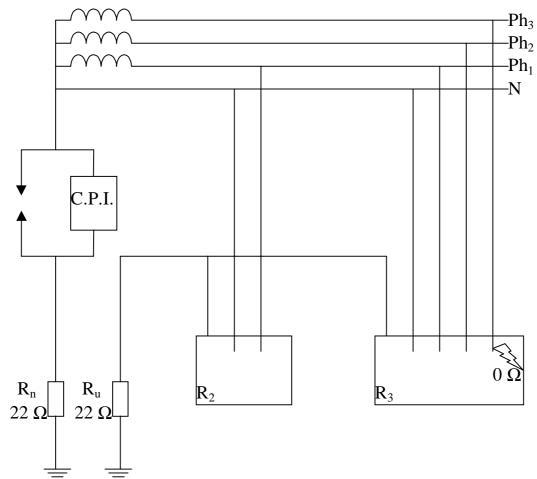
	Schema de	naison à la terre u	e type 11
Ц			
Objectif:			
-			
-			
-			
Matériel :			
-			
-			
-			
-			
D			
Documents:			
-			
-			
Secteur : Atelier d'élec	trotechnique	Durée	e: 3,5 heures
Nom, Prénom:		Classe, Grou	ipe:

Schéma de liaison à la terre de type IT

- 1. Partie théorique
 - 1.1.Étude du schéma de liaison à la terre
 - 1.1.1. Quel est le type de schéma de liaison à la terre utilisé ?
 - 1.1.2. Expliquer la signification des lettres qui le désigne.
 - 1.1.3. Donner le rôle du limiteur de surtension
 - 1.1.4. Quelle est la signification et le rôle du C.P.I. ?
 - 1.2.Étude de défaut sur l'installation
 - 1.2.1. Défaut simple

Supposons un défaut franc entre la phase 1 et la masse de la machine 3

- 1.2.1.1. Tracer le parcours du courant de défaut I_{d1} sur le document réponse 1.
- 1.2.1.2. Déterminer la tension de contact U_{c1} , sachant que l'impédance Z à une valeur de 2200 Ω . On néglige la résistance des câbles.
- 1.2.1.3. Comparer la tension de contact (U_{c1}) par rapport à la tension limite conventionnelle de sécurité $(U_1 = 50 \text{ V})$. Conclure sur la sécurité des personnes sur un défaut simple.
- 1.2.2. Défaut double

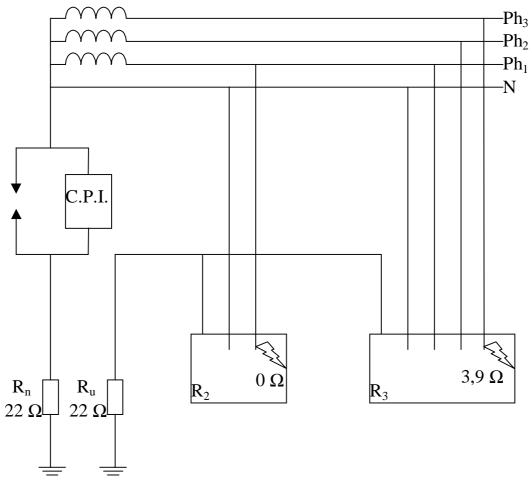

Supposons deux éléments simultanés, un défaut franc entre la phase 1 et la masse de la machine 3 et un défaut franc entre la phase 2 et la masse de la machine 2.

- 1.2.2.1. Tracer la boucle de défaut I_{d2} sur le document réponse 2
- 1.2.2.2. Déterminer la valeur du courant de défaut I_{d2}.
- On néglige les réactances des câbles (on ne prend en compte que la résistance des câbles).
- L'impédance entre les points E et F est négligeable.
- La nature des conducteurs est donnée en document annexe
- La résistivité du cuivre est de $\rho = 22,5.10^{-3} \Omega \cdot \text{mm}^2 \cdot \text{m}^{-1}$.
- La résistivité de l'aluminium est de $\rho = 36.10^{-3} \ \Omega.mm^2.m^{-1}$.
 - 1.2.2.3. Déterminer la tension de contact U_{c2} (tension de contact en les deux masses)
 - 1.2.2.4. Préciser les valeurs des courants de déclenchement magnétique I_{mg4} et I_{mg5} des disjoncteur Q_4 et Q_5 .

- 1.2.2.5. Comparer I_{mg4} et I_{mg5} à la valeur du courant de défaut I_{d2} . Indiquer la valeur du temps de déclenchement de Q_4 et de Q_5 pour ce courant de défaut.
- 1.2.2.6. Indiquer si la sécurité des personnes est assurée en comparant $U_{\rm c2}$ avec la tension limite conventionnel de sécurité ($U_{\rm l}=50~{\rm V}$). Conclure sur la sécurité des personnes.

2. Partie pratique

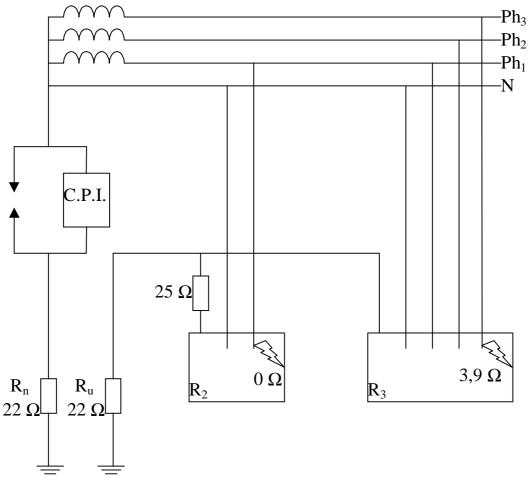
- 2.1.Liaison du réseau
 - 2.1.1. Représenter sur le document réponse 3 les liaisons à faire pour avoir un schéma de liaison à la terre de type IT.
 - 2.1.2. Faites vérifier votre schéma
- 2.2.Étude du défaut simple
 - 2.2.1. Compléter sur le document réponse 3 afin que le montage corresponde au schéma suivant.



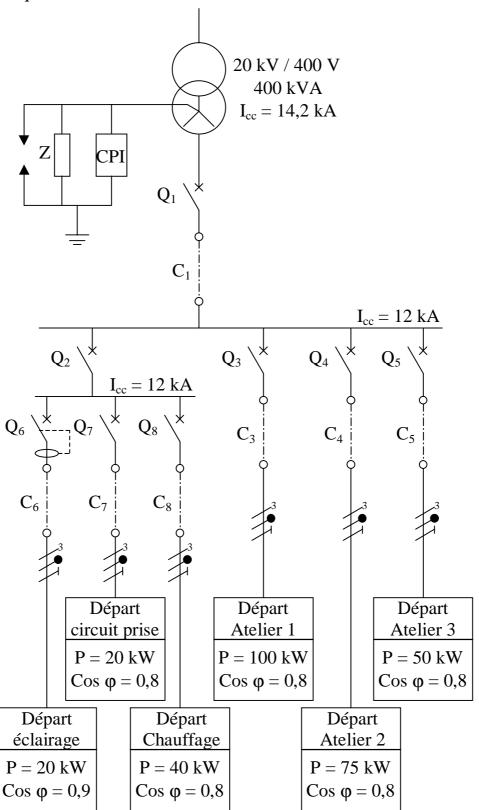
- 2.2.2. Faites vérifier votre schéma pour effectuer le montage.
- 2.2.3. Effectuer votre montage, mettre sous tension, créer un défaut sur le récepteur R₃.

2.2.4. Mesurer la tension de contact apparaissant entre la masse de R_2 et la terre (U_{c1}) puis la tension de contact entre la masse du récepteur 2 et la masse du récepteur 3 (U_{c2}) .

2.3.Défaut double


2.3.1. Compléter le document réponse 4 afin que le montage corresponde au schéma suivant.

- 2.3.2. Faites vérifier votre schéma pour effectuer le montage.
- 2.3.3. Effectuer votre montage, mettre sous tension.
- 2.3.4. Créer un défaut sur le récepteur R₂. Que se passe t'il ?
- 2.3.5. Arrêter la signalisation sonore et créer un deuxième défaut dans le récepteur R_3 sans supprimer le premier défaut. Que se passe t'il et pourquoi?


2.4. Défaut double avec un départ long

2.4.1. Compléter le document réponse 5 afin que le montage corresponde au schéma suivant.

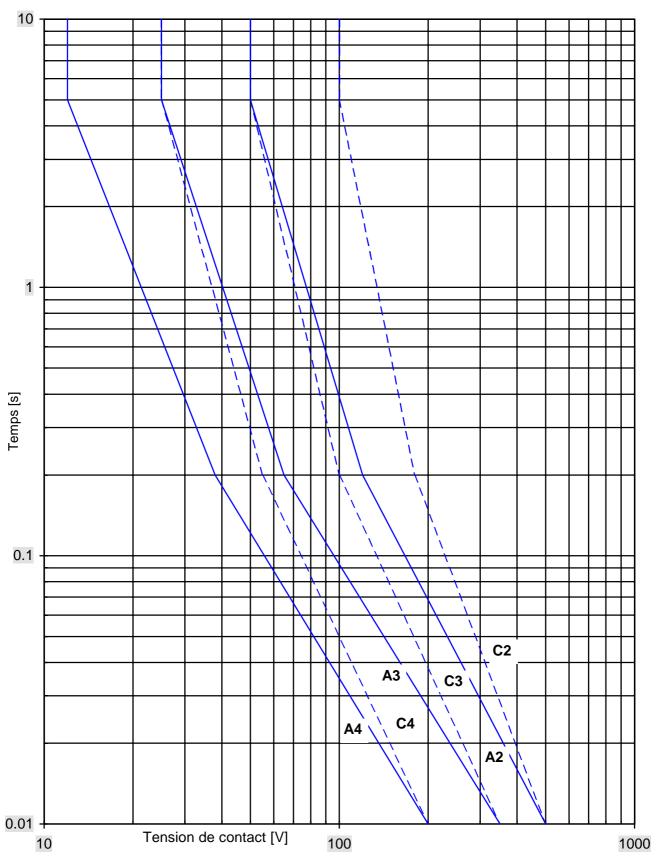
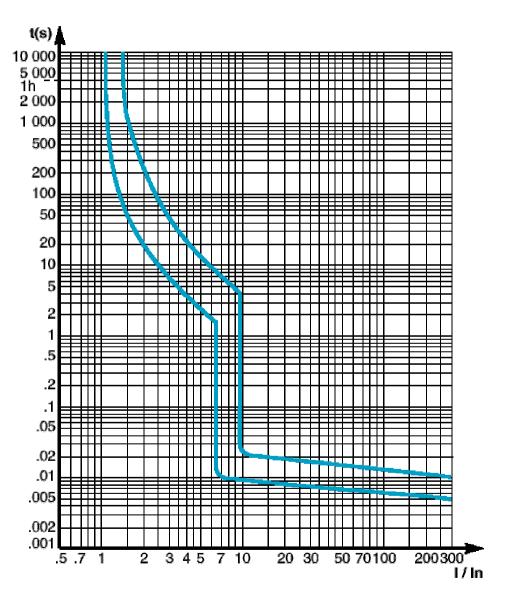

- 2.4.2. Faites vérifier votre schéma pour effectuer le montage.
- 2.4.3. Effectuer votre montage, mettre sous tension, créer un premier défaut dans le récepteur R₂. Que se passe t'il ? Arrêter la signalisation sonore.
- 2.4.4. Créer un deuxième défaut (sans supprimer le premier) dans le récepteur R_3 . Mesurer les tensions de contact entre la masse de R_3 et la terre (U_{c1}) et entre les deux masses (U_{c2}) .
- 2.4.5. Conclure sur la sécurité des personnes.
- 2.4.6. Quels type de protections peut-on adopter pour assurer la sécurité des personnes ?

Schéma électrique de l'installation

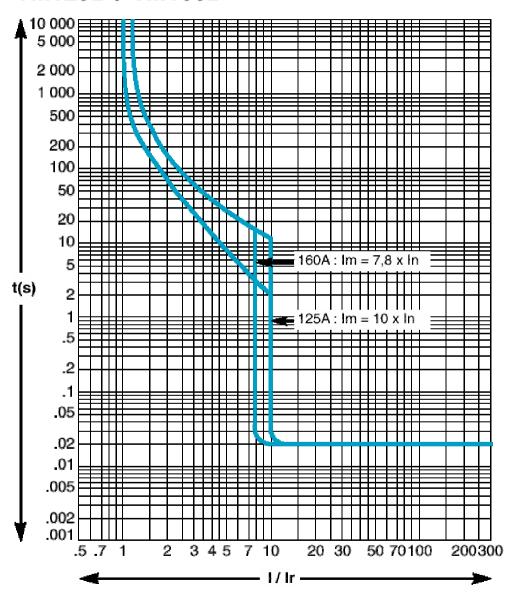
Liste des	câbles					
Symbole	Longueur	Nb.	Section phase	Section P.E.	Section neutre	Âme
	[m]	phase	[mm²]	$[mm^2]$	[mm²]	
C_1	55	3	2 x 300	1 x 95	1 x 300	Al
C_3	55	3	1 x 95	1 x 50	1 x 50	Cu
C_4	75	3	1 x 75	1 x 55	1 x 55	Al
C_5	75	3	1 x 30	1 x 30	1 x 30	Cu
C_6	35	3	1 x 4	1 x 4	1 x 4	Cu
$\overline{\mathbf{C}_7}$	35	3	1 x 6	1 x 6	1 x 6	Cu
$\overline{C_8}$	35	3	1 x 10	1 x 10	1 x 10	Cu

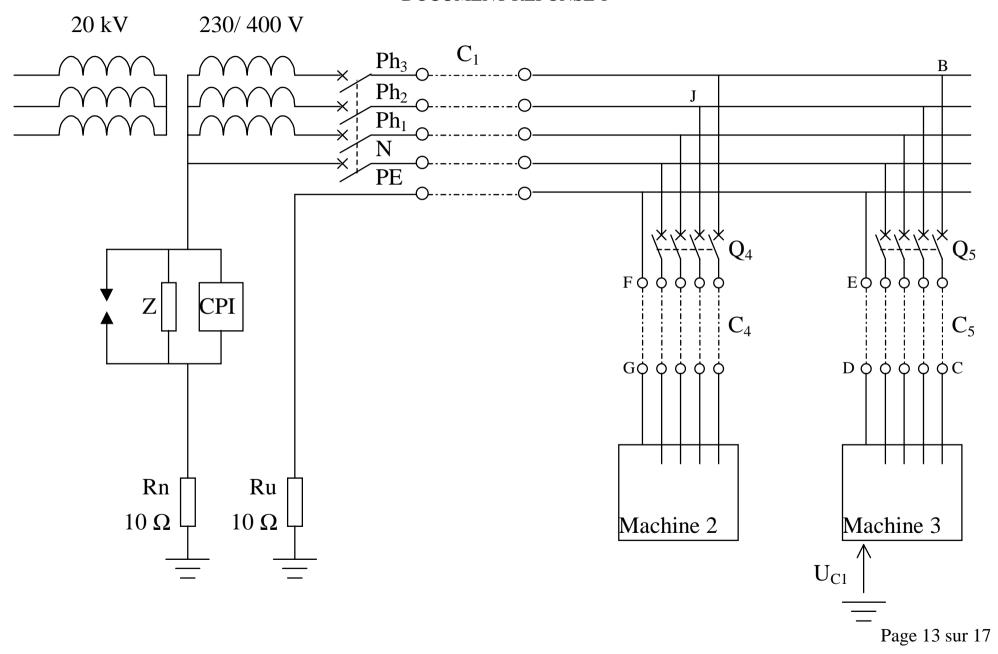
Liste des disjoncteurs			
Symbole	Nom	Déclencheur ou courbe	Calibre [A]
Q_1	C801N	STR35NE800	630
\mathbb{Q}_2	NS160N	TM160D	160
Q_3	NS250N	TM250D	200
\mathbb{Q}_4	NS160N	TM160D	160
Q_5	NG125N	С	100
Q_6	C60L	В	50
$\overline{Q_7}$	C60L	В	50
$\overline{\mathbb{Q}}_{8}$	C60H	С	63

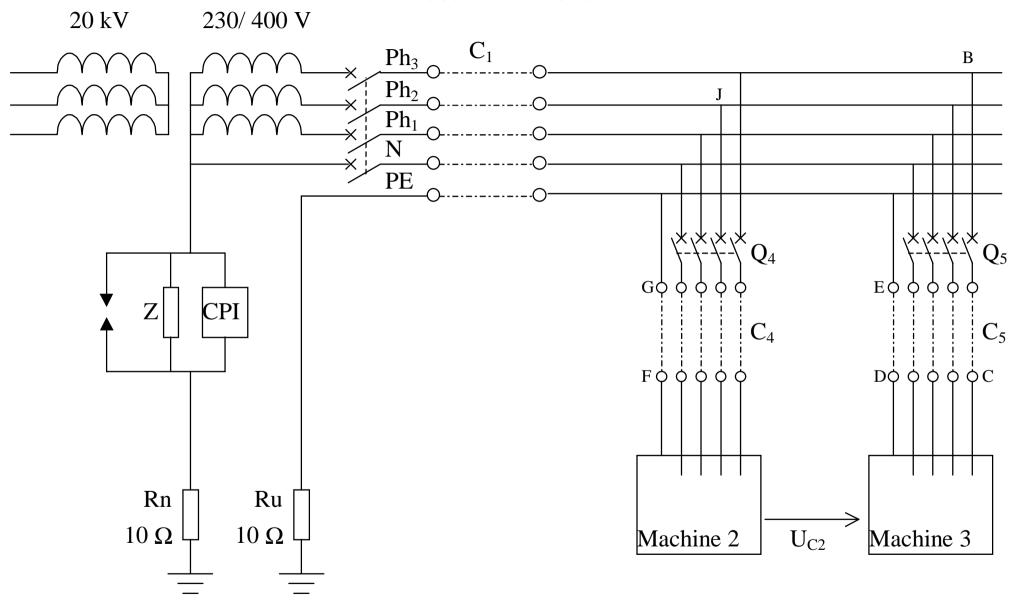
A : Courbe en courant alternatif

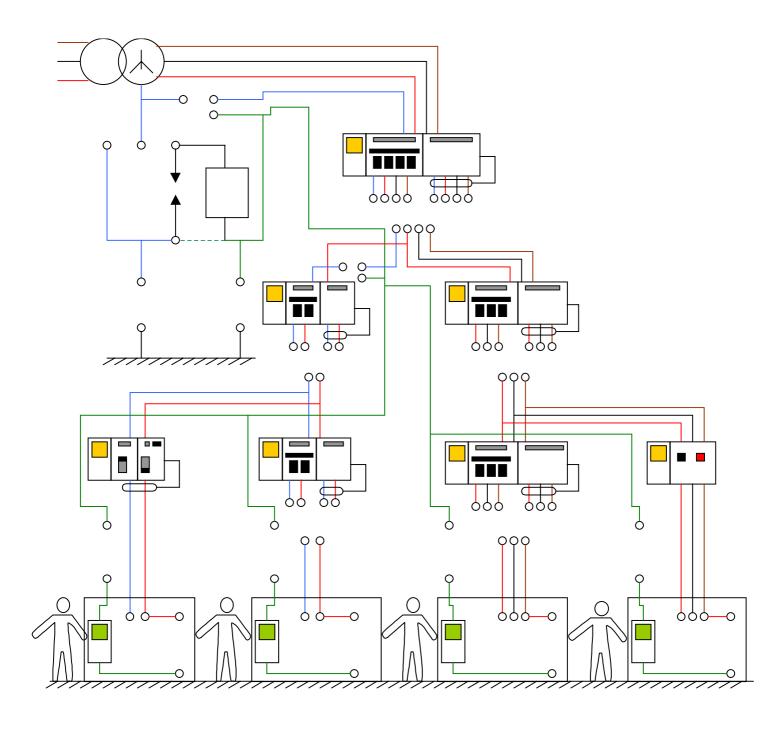

C : Courbe en courant continu

4 : Courbes correspondantes aux conditions immergées (BB 4 ou BB 3 et BC 4)


3 : Courbes correspondantes aux conditions mouillées (BB 3 ou BB 2 et BC 4)


2 : Courbes correspondantes aux conditions normales (BB1 ou BB 2)


NG125 courbe C


TM125D / TM160D

